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Abstract

A fully non-linear finite difference model has been developed based on inviscid flow equations. Numerical experi-

ments of sloshing wave motion are undertaken in a 2-D tank which is moved both horizontally and vertically. Results of

liquid sloshing induced by harmonic base excitations are presented for small to steep non-breaking waves. The sim-

ulations are limited to a single water depth above the critical depth corresponding to a tank aspect ratio of hs=b ¼ 0:5.
The numerical model is valid for any water depth except for small depth when viscous effects would become important.

Solutions are limited to steep non-overturning waves. Good agreement for small horizontal forcing amplitude is

achieved between the numerical model and second order small perturbation theory. For large horizontal forcing, non-

linear effects are captured by the third-order single modal solution and the fully non-linear numerical model. The

agreement is in general good, both amplitude and phase. As expected, the third-order compared to the second-order

solution is more accurate. This is especially true for resonance, high forcing frequency and mode interaction cases.

However, it was found that multimodal approximate forms should be used for the cases in which detuning effects occur

due to mode interaction. We present some test cases where detuning effects are evident both for single dominant modes

and mode interaction cases. Furthermore, for very steep waves, just before the waves overturn, and for large forcing

frequency, a discrepancy in amplitude and phase occurs between the approximate forms and the numerical model. The

effects of the simultaneous vertical and horizontal excitations in comparison with the pure horizontal motion and pure

vertical motion is examined. It is shown that vertical excitation causes the instability associated with parametric res-

onance of the combined motion for a certain set of frequencies and amplitudes of the vertical motion while the hor-

izontal motion is related to classical resonance. It is also found that, in addition to the resonant frequency of the pure

horizontal excitation, an infinite number of additional resonance frequencies exist due to the combined motion of the

tank. The dependence of the non-linear behaviour of the solution on the wave steepness is discussed. It is found that for

the present problem, non-linear effects become important when the steepness reaches about 0.1, in agreement with the

physical experiments of Abramson [Rep. SP 106, NASA, 1966].
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1. Introduction

The present paper investigates numerically steep free surface sloshing in fixed and base-excited rectan-
gular tanks with a focus on moving liquid tanks. Numerical modelling is necessary because neither linear

nor second-order potential theory is applicable to steep waves where high-order effects are significant.

Recently, Cariou and Casella [6] strengthened this concern through an extensive comparison study of

numerical sloshing predictions in ship tanks. The study comprised 11 viscous codes. They concluded and

urged the need for further research on accurate free surface predictions.

Prediction of free surface motions of liquids in tanks is of practical importance. Sloshing effects of free-

surface motion in tanks driven by external forces may have serious consequences for a range of engineering

applications. For example, sloshing effects in the ballast tanks of a ship may cause it to experience large
rolling moments, and eventually capsize. Also, if the forcing frequency is near the natural sloshing fre-

quency, the high dynamic pressures due to resonance may damage the tank walls. Further applications in

the aerospace industry has been reviewed and discussed comprehensively by Abramson [2], both analyti-

cally and experimentally, and recently numerical sloshing motion experiments were carried out by Gerrits

[17]. Another example is the use of tuned liquid dampers designed to suppress wind-induced structural

vibrations experienced in tall buildings. This type of damping device has been recently installed in a few tall

buildings, e.g. the 105 m high Hobart Tower in Tasmania and the 158 m Gold Tower in Japan, as described

by Kareem et al. [26]. Designers are faced with the task of understanding complex fluid–structure inter-
actions when attempting to estimate the energy dissipation performance of tuned liquid dampers. To this

end, a numerical wave tank can provide useful information on the free surface motions, resonant fre-

quencies, etc.

Sloshing effects in fixed tanks have been the subject of a great deal of past research. For example, Telste

[35] modelled inviscid sloshing motion in a 2-D fixed tank by means of a finite difference model. Ferrant and

Le Touze [15] applied an inviscid pseudo-spectral model to predict 3-D free sloshing. Ushijima [38] used an

arbitrary Lagrangian–Eulerian method on boundary-fitted grids to analyse viscous sloshing and swirling

effects in a 3-D cylindrical fixed tank.
There are also several examples of previous studies devoted to investigation of the sloshing waves in

moving tanks; both inviscid and viscous formulations. Recently, Bredmose et al. [5] report on ‘‘flat-topped’’

experimentally observed free-surface profiles caused by vertical harmonic forced accelerations. Chen et al.

[8] use a finite difference model to examine large sloshing motions in 2-D tanks excited by the horizontal

component of four seismic events. For non-overturning waves their model demonstrated that non-linear

effects during some earthquakes are responsible for damage of liquid tanks. Chern et al. [9] and Turnbull et

al. [37] simulated 2-D forced sloshing in horizontally excited tanks of inviscid liquid (near resonance) using

simple r-transformed mappings in pseudospectral and finite element schemes. Celebi and Akyildiz [7]
developed a viscous solver to capture non-linear free surface flows using the volume of fluid technique,

originally developed by Hirt and Nichols [22]. They simulated 2-D sloshing motion in tanks which was

forced to roll or to move vertically. Wu et al. [43] use an inviscid finite element model to study the behaviour

of non-breaking waves in 3-D tanks. They focus on near resonance cases primarily based on tanks excited

by both sway and surge motions and report on the effects of 3-D motions in comparison with 2-D standing

waves. Wu et al. show a few tests with pure prescribed heave excitation and one test case included combined

sway/surge/heave motions of the tank.

The motivation of the present numerical work is to explore the behaviour of liquid motions in a forced
excited tank prescribed to move simultaneously in horizontal and vertical directions. To the author�s
knowledge, no investigation of the combined motion has been done systematically. Moreover investigators

have previously focused on either horizontal or vertical driven excitation. In particular, the vertical tank

excitation, as originally explored in Faraday�s experiment [14], has had much attention (e.g. the review

papers by Miles and Henderson [30]; Perlin and Schultz [32] and the recent work by Jiang et al. [24,25]). The
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literature also reveals extensive research on pure horizontal excitation, in general, especially in relation to

the application of idealised seismic events [8] and ship stability [10].

Previous numerical models generally treat the moving free surface boundary in one of two ways: either
by using Lagrangian tracking of free surface nodes with regridding, or by mappings. The former has the

disadvantage that the surface velocities are difficult to predict correctly, and so free surface smoothing is

often required. Although mappings inherently overcome this problem, they are less flexible to apply to

irregular geometries or to cases where submerged bodies are present in the flow domain. Moreover mapping

types of schemes cannot predict run-up/overturning due to the single value formulation [3].

In the present paper numerical experiments of liquid motion in 2-D tanks excited by periodic loadings

are undertaken. The fully non-linear numerical model is based on inviscid flow equations and solutions are

obtained using finite differences. This paper discusses sloshing motion behaviour in a numerical wave tank
based on potential theory mapped according to a modified r-transformation that stretches the grid from the

bed to the free surface. The r-transformation has been widely applied, recently to shallow water flows [27]

and to simulate waves in relatively deep water [37]. The present mapping ensures that cell increments have

unit dimensions in the discretised mapped domain, and hence simplifies the discretised formulation. The

flow equations are solved on a rectangular grid. The sigma-transformation has two major advantages.

Remeshing due to the moving free surface is avoided and the mapping avoids the need to calculate the free

surface velocity components explicitly. Extrapolations are unnecessary, and so free surface smoothing by

means of a spatial filter is often not required. However, it should be noted that the mapping has to be single-
valued in the vertical direction, and so the formulation does not permit the free surface to become vertical

or overturn. Equivalent solutions on 2-D grid with sigma-transformation are known to be extremely stable,

unlike other schemes which have to use free-surface smoothing [37]. Herein complicated free surface be-

haviour are investigated based on a finite difference scheme which is simple, accurate and computationally

efficient. The numerical model is valid for any water depth except for small depth when viscous effects

would become important. Moreover, the present model can readily be extended to 3-D waves.

The results presented herein have been limited to a single liquid depth (for reasons of brevity). However,

it is very important to note that the liquid depth has a profound influence on non-linear free surface effects.
It has been established that there is a critical liquid depth that delineates two non-linear regimes of the

liquid free surface referred to as soft and hard spring characteristics. Gu and Sethna [19], Gu et al. [20],

Virnig et al. [40] have examined the role of the liquid critical depth in rectangular tanks subjected to vertical

sinusoidal excitation. Another important feature is that there is an excitation frequency range over which

the free surface exhibits chaotic motion [23]. It should be noted that Ibrahim et al. gives a comprehensive

review on sloshing motion predictions with more than 1000 references. The role of critical depth in tanks

subjected to horizontal motions have also been studied [10–13,21]. Moreover, Waterhouse [41] investigated

liquid behaviour near critical depth and gives a complete fifth-order analysis of soft/hardening spring
characteristics.

Analyses of small to steep non-breaking waves are carried out for free and forced sloshing motion in a

rectangular tank with constant still water depth providing benchmark tests. The main measure of impor-

tance of non-linearity for problems with a free surface is the wave steepness, which for regular waves can be

defined as S ¼ peak-trough=wave length. The higher the steepness is, the more important non-linear

phenomena become. This may result in interaction between different frequencies or non-linear dispersion

effects, as the velocity of wave motion becomes dependent on the amplitude. Usually non-linearity reflects

itself through relatively higher peaks and relatively smaller troughs of the surface elevation. The present
paper shows results from these free and forced sloshing tests and indicate that the model is capable of

simulating highly non-linear free surface motions which is known to occur in steep waves.

First, in Sections 2–4 we present the governing equations, approximate forms and the numerical model.

The first test studies are shown in Section 5. Simulations based on fundamental analyses of standing waves

in a fixed rigid tank are carried out. The numerical model is validated for different wavelengths. Increasing



56 J.B. Frandsen / Journal of Computational Physics 196 (2004) 53–87
wave steepnesses are simulated in order to demonstrate cases where the fully non-linear model provides

solutions not obtainable with the approximate forms. In Section 6 the tank is excited vertically and the

stability of the sloshing motion is discussed. Benjamin and Ursell [4] investigated the problem theoretically.
Their analyses were based on an inviscid flow model with surface tension, and they found that small

amplitude wave motion is governed by the Mathieu equation. Benjamin and Ursell concluded that the

linearised solutions are always unstable for an external forcing frequency equal to twice the sloshing fre-

quency. The present model investigates the consequences of eliminating the non-linear terms. In Section 7

we focus on the case of pure horizontal tank motion. The solutions for resonant and off-resonant frequency

of horizontal excitation for various amplitudes are presented. The influence of non-linearity for high

amplitude solutions are illustrated on examples of the surface elevation behaviour, power spectra and

phase-plane trajectories. In Section 8 the results are extended for the case of combined horizontal and
vertical tank excitation, and emphasis is made on the new flow features generated. It is shown that the

vertical tank motion is responsible for the instability of the solution for specific values of motion param-

eters. In addition to the resonant frequency of the horizontal tank excitation, it is shown that an infinite

number of additional resonance frequencies exist due to the combined motion of the tank. The importance

of the non-linear effects is discussed for resonant, non-resonant and unstable solutions.

The results presented herein have been computed on a SUN Ultra 60 workstation with 450 MHz CPU

(SPECfp95: 32.7). The CPU time required did not exceed 2 h for the fixed tank studies whereas the heave/

surge tank tests were the most intensive with an average CPU time of 24 h. Only 12 Mb RAM was required
for any test case.
2. Governing equations of ideal free-surface waves in moving tanks

Investigations of 2-D non-linear motion of liquid in moving tanks are undertaken. Rectangular tanks

which move with respect to an inertial Cartesian coordinate system (X ; Z) with horizontal X -axis and

vertical Z-axis, and tank position at time t of X ¼ XTðtÞ, Z ¼ ZTðtÞ are considered. The Cartesian coordi-
nates (x; z) are connected to the tank, with the origin at the mean free-surface at the left-hand side of the

tank. The fluid is assumed to be incompressible, irrotational and inviscid. The fluid motion is therefore

governed by Laplace�s equation,

o2/
ox2

þ o2/
oz2

¼ 0; ð1Þ

where / is the velocity potential. In the coordinate system fixed to the tank the fluid velocity components
normal to the fixed boundaries are equal to zero. Hence, on the bottom and the walls of the tank we have

o/
ox

����
x¼0;b

¼ 0;
o/
oz

����
z¼�hs

¼ 0; ð2Þ

where b is the length of the tank and hs denotes still water depth. On the free surface the dynamic and

kinematic boundary conditions hold, which are

o/
ot

����
z¼f

¼ � 1

2

o/
ox

� �2
"

þ o/
oz

� �2
#
� ðg þ Z 00

TðtÞÞf� xX 00
TðtÞ ð3Þ

and

of
ot

����
z¼f

¼ o/
oz

� o/
ox

of
ox

; ð4Þ
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respectively, where f is the free surface elevation measured vertically above still water level, and Z 00
T and X 00

T

are the vertical and horizontal acceleration of the tank, and g denotes acceleration due to gravity.

Initially the fluid is assumed to be at rest with some initial perturbation of the free-surface. Thus, the
initial conditions are:

/ ¼ 0; f ¼ f0ðxÞ at t ¼ 0: ð5Þ

It should be noted that (5) is difficult to reproduce in a physical experimental treatment because it is not

possible to achieve simultaneously r/ ¼ 0 and a non-infinitesimal f0. So it is somewhat hard to imagine

that any physical experimental way can generate a single mode in a tank. Nevertheless, understanding the

time evolution of the single mode is very important because it can help to predict certain features of the

multi-mode forced motion. An example is the vertical excited tank (Section 6) where this ‘‘non-physical’’

initial condition is used. Examination of the spectra of the uni-modal motion helps to predict the existence
of the side resonances related to for example the combined horizontal/vertical tank motion experiments

(Section 8). It is less complicated to deal with non-physical initial conditions in a numerical experimental

set-up. The real advantage of numerical methods is the possibility to model situations which are hard to

reproduce in physical experiments, but are important from methodological or theoretical view point. But

the method of course should be accurate and reliable.

Finally, we should also note that the mean water level in the tank remains constant, that is:Z b

0

fdx ¼ 0: ð6Þ
3. Approximate solution for sloshing motion in moving tanks

Analytical approaches and related asymptotic solutions to predict sloshing motion in fixed and moving

tanks have been explored by several investigators, e.g., Faltinsen et al. [11], Ockendon and Ockendon [31],

Hill [21]. Ockendon and Ockendon [31] presents analytical schemes for resonant sloshing due to either

vertical or horizontal excitation. They have for example explained mathematically why the schemes require

Moiseyev-like detuning and consequently yield a third order secular equation to find the dominant wave

amplitude response. Proceeding this way, numerous third-order asymptotic solutions have been derived.

For example, Faltinsen [10] derived a third order asymptotic solution for horizontal tank excitation. We

should also mention that although Faltinsen et al. [11] present test cases for horizontal tank motions, they
have developed a multimodal algorithm for arbitrary tank motions, including roll motion. Hill [21] also

investigated transient resonant waves but based on a different third-order analytical algorithm.

As mentioned, the literature reveals that sloshing motion has been investigated with either vertical or

horizontal excitation. This section describes an asymptotic solution where combined heave/surge excita-

tions are considered. In the approximations herein, we assume small amplitudes of horizontal motion and

initial surface perturbation. The third-order solution presented is limited to single mode resonance cases.

We should also mention that our approach is similar to Faltinsen et al. [11] although they use the Ham-

ilton�s principle to obtain the evolution equations.
Let us introduce the non-dimensional variables in the following way

/ ¼ acg
xc

/�; f ¼ acf
�; XT ¼ acX �

T; ZT ¼ g
x2

c

Z�
T;

ðx; z; b; hsÞ ¼
g
x2

c

ðx; z; b; hsÞ�; t ¼ xct�; x ¼ x�=xc;
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where the asterisk is used to denote the non-dimensional values, and ac and xc are the characteristic wave

amplitude and frequency, respectively. Later in this section we shall omit asterisks assuming all the values

to be non-dimensional. The choice of the characteristic amplitude and frequency depends on the particular
problem in hand and can be related to either the frequency and amplitude of the tank motion or the

frequency and amplitude of one of the sloshing modes. The Laplace equation and the surface boundary

conditions keep the original forms in the non-dimensional coordinates, while the surface boundary con-

ditions can be rewritten as follows

o/
ot

þ ð1þ Z 00
TðtÞÞfþ xX 00

TðtÞ ¼ ��
1

2
ðr/Þ2 z¼�f

�� ;
of
ot

� o/
oz

¼ ��
o/
ox

of
ox z¼�f

�� ; ð7Þ

where � ¼ acx2
c=g is the characteristic wave steepness. In this section we shall consider the limit of small

steepness � ! 0. Expanding the surface boundary conditions into the Tailor series near the mean water level

we can rewrite (7) as

o/
ot

þ ð1þ Z 00
TðtÞÞfþ xX 00

TðtÞ ¼ ��
1

2
r/ð Þ2

�
þ f

o

ot
o/
oz

�
� �2 fr/r o/

oz

�
þ 1

2
f2

o

ot
o2/
oz2

�
þOð�3Þ

����
z¼0

;

of
ot

� o/
oz

¼ �

�
� of
ox

o/
ox

þ f
o2/
oz2

�
þ �2

1

2
f2
o3/
ox3

�
� f

of
ox

o2/
oxoz

�
þOð�3Þ

����
z¼0

:

ð8Þ

The Laplace equation can now be solved in the rectangular domain with the boundary conditions (8) on the

mean water level f ¼ 0.

The general solution of the Laplace equation in the rectangular domain satisfying the boundary con-

dition on the rigid surfaces can be represented in the form of expansion with the linear sloshing modes

/ ¼
X1
n¼0

coshðnkðzþ hsÞÞ
coshðnkhsÞ

cosðnkxÞFnðtÞ; f ¼
X1
n¼0

cosðnkxÞZnðtÞ; ð9Þ

where k ¼ p=b is the wavenumber corresponding to the first sloshing mode.

The functions FnðtÞ and ZnðtÞ describing the time evolution of individual components can be found after

substituting the general solution (9) into the free-surface boundary conditions (8) and collecting the terms

corresponding to different wave numbers nk.
First, let us consider the classical perturbation approach. We shall represent the functions Fn and Zn from

(9) in the form of the asymptotic expansion with respect to the powers of the small parameter �

Fn ¼ F ð1Þ
n þ �F ð2Þ

n þ � � � ; Zn ¼ Zð1Þ
n þ �Zð2Þ

n þ � � � :

Substituting into (8) and collecting the terms with the same powers of � we obtain the equations for each

order of approximation. In the main approximation (Oð�0Þ) we obtain the following equations describing

the linear sloshing of each of the modes

F ð1Þ0
n þ ð1þ Z 00

TÞZð1Þ
n ¼ �bnX 00

T ; Zð1Þ0
n � x2

nF
ð1Þ
n ¼ 0; ð10Þ

where xn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kn tanhðknhsÞ

p
are the linear sloshing frequencies, and bn are the nth coefficients of the Fourier

expansion of x with respect to cosðnkxÞ: b0 ¼ b=2, bn ¼ 0 for even n and bn ¼ �4b=ðpnÞ2 for odd n.
For each component n, Eq. (10) can be reduced to a single equation for the surface elevation

Zð1Þ00
n þ x2

nð1þ Z 00
TÞZð1Þ

n ¼ �bnx2
nX

00
T :
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In the case of harmonic excitation XTðtÞ ¼ ah cosðxhtÞ, ZTðtÞ ¼ av cosðxvtÞ this equation can be reduced

to the non-homogeneous Mathieu�s equation

Zð1Þ00
n ðsÞ þ ðp � 2q cosð2sÞÞZð1Þ

n ðsÞ ¼ 4bnx2
nx

2
hah cosð2xhsÞ; ð11Þ

where s ¼ t=2, q ¼ 2avx2
vx

2
n, p ¼ 4x2

n. We note that Eq. (11) represent sloshing motions in a pure vertically
excited tank when the right hand side is zero [4].

Solution of the homogeneous Mathieu equation can be represented as a linear combination of two

linearly independent Floquet solutions FrðzÞ, Frð�zÞ having the form

FrðzÞ ¼ eirzP ðzÞ;

where rðp; qÞ is the Mathieu characteristic exponent and P ðzÞ is periodic with period p [1]. Solution of

Mathieu�s equation is stable when the value of r is real, and it becomes unstable when the value of r is

complex. For small values of the parameter q in the stability regions, the characteristic exponent has the
following asymptotic expansion

rðp; qÞ ¼ ffiffiffi
p

p � q2
1

4 p � 1ð Þ ffiffiffi
p

p � q4
15p2 � 35p þ 8

64 p � 4ð Þ p � 1ð Þ3p3=2
þOðq6Þ; ð12Þ

which can be used to estimate r for small and moderate values of q. The contour plots of the real part of the
characteristic exponent rðp; qÞ are represented in Fig. 1, where the thick lines indicate the boundaries of the

instability regions.

Furthermore, the function FrðzÞ can also be written as a superposition of harmonic oscillations with

frequencies r þ 2k, k ¼ 0;�1;�2 . . ., as follows:

FrðzÞ ¼
X1
k¼�1

c2k eiðrþ2kÞ:

If the non-homogeneous Eq. (11) contains solutions in the stable regions, resonance will occur when the

frequency of the right hand side equals one of these frequencies. It should be noted, that the strength of
Fig. 1. Stability map for the first-order linear solution including contour plots of Mathieu characteristic exponent rð4X2
n; 2jvX

2
nÞ.

r-values are listed internally on the vertical axis of the figure. The thick lines show the boundaries of instability regions.
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these resonances decays faster for large absolute values of k. Thus, the first-order solution will exhibit

resonant behaviour when the frequency of horizontal excitation xh satisfies the condition

xh ¼ xres
k ¼ r

2
þ k; k ¼ 0;�1;�2; . . . ð13Þ

So in contrast to pure horizontally forced excited tank motion, which exhibits one distinct case of reso-
nance, the case of combined forced tank motion (horizontal and vertical) contains an infinite number of

resonances. As it can be seen from (12), for small vertical excitation, as q ! 0, the value of r=2 goes to xn,

which in the limit gives the linear resonant frequency for pure horizontal motion.

The right hand sides (Oð�1Þ) of the second order equations of Eq. (8) include products of the derivatives

of the first-order solutions, which are the infinite sums of sines or cosines. Therefore, for derivations of the

second-order solution it is necessary to estimate the nth Fourier components of these products. This can be

carried out by using the following expression:

X1
n¼0

An cosðknxÞ
X1
n¼0

Bn cosðknxÞ ¼
X1
n¼0

CnðA;BÞ cosðknxÞ;

CnðA;BÞ ¼ cn ð1
 

� signðnÞÞA0B0 þ A0Bn þ AnB0 þ
X1
j¼�1

AjjjBjn�jj

!
;

c0 ¼
1

4
; cn ¼

1

2
n ¼ 1; 2; . . .

and

X1
n¼0

An sinðknxÞ
X1
n¼0

Bn sinðknxÞ ¼
X1
n¼0

SnðA;BÞ cosðknxÞ; SnðA;BÞ ¼
1

2
signðjðj� nÞÞ

X1
j¼�1

AjjjBjn�jj:

The equations for the time evolution of the second-order Fourier components of the surface elevation and

velocity potential can now be written as follows:

Zð2Þ0
n � x2

nF
ð2Þ
n ¼ Cnðk2F ð1Þ;Zð1Þ

n Þ � SnðkF ð1Þ; kZð1ÞÞ;

Uð2Þ0
n þ ð1þ Z 00

TÞZð2Þ
n ¼ � 1

2
SnðkF ð1Þ; kF ð1ÞÞ � 1

2
Cnðx2F ð1Þ;x2F ð1ÞÞ � Cnðx2F ð1Þ0 ; Zð1ÞÞ:

ð14Þ

The importance of the cubical non-linearity for the behaviour of dynamical systems is well known [28].

Third order terms can influence the solution in the main approximation leading to an important effect as

change of the natural frequency of the system with amplitude. This leads to dramatical changes in be-

haviour of the non-linear system near resonance compare to a linear one. In the classical perturbation

theory such influence can be taken into account, for example, by applying the solvability condition for the

third order equations [21] which leads to the restrictions for the behaviour of the first order amplitude.

Another way of doing this is to construct a non-linear evolution equation for each of the modes [11]. For

high orders the procedure involves extensive algebra including the multiple infinite sums. Nevertheless, in
the case when there is one dominating mode, the procedure of constructing an asymptotic solution becomes

much simpler. Such a dominating mode will generate only a restricted number of modes in higher orders

[10]. This situation, for example, takes place in the case of resonance or instability of one of the modes.

In the case of resonance small horizontal excitation can produce finite perturbations in fluid. We assume

that the amplitude of horizontal motion has order �2. That is

XTðtÞ ¼ �2X̂TðtÞ; X̂TðtÞ ¼ Oð1Þ as � ! 0:
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The asymptotic representation of the non-linearly interacting modes is then

/ ¼
X3
n¼1

�n�1 coshðnkmðzþ hsÞÞ
coshðnkmhsÞ

cosðnkmxÞFnmðtÞ; f ¼
X3
n¼1

�n�1 cosðnkmxÞZnmðtÞ; ð15Þ

where km ¼ mp=b is the wave number corresponding to the dominating mode. The term n ¼ 0 is trivial.

Because of the constant mean water level we have Z0 ¼ 0, and the corresponding term for the velocity

potential is a function of time only and does not produce the contribution into the velocity field. Therefore

we have omitted these terms from (15). Substituting (15) into (8) and keeping terms up to Oð�2Þ, we derive
the following non-linear ODE�s describing the evolution of the modes in (15)

F 0
m þ ð1þ Z 00

TÞZm ¼ �bmX 00
T þ �2

1

8

�
� 4ð2k2m þ x2

mx
2
2mÞF1F2 � 4x2

mZ2mF 0
m

� 8k2mx
2
mZmF 2

m � ð3k2mZmF 0
m þ 4x2
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and

Z 0
m � x2

mFm ¼ �2 ZmF2m

�
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2
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�
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2
Z2m

�
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�
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Z 0
2m � x2
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3mF3m ¼ 3k2mZmF2m þ 3
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8
k2mx

2
mZ

2
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ð17Þ

The modes which are not included in (15) do not take part in the non-linear interaction and can be included

as independent linear modes. They then satisfy the linear equation (10). In the linear limit, when we neglect

all the non-linear terms in (16) and (17), all modes are independent and satisfy Eq. (10).
When considering the particular case studies later in the paper we use specific frequencies and amplitudes

as characteristic ones. They are: non-dimensional scale of surface perturbations for single mode motions

e ¼ ax2
n=g, where a is the amplitude of the initial surface perturbation; non-dimensional forcing amplitudes

jv ¼ avx2
v=g and jh ¼ ahx2

h=g, where av;h and xv;h are the amplitudes and frequencies of vertical and

horizontal excitations respectively; non-dimensional sloshing frequency Xn ¼ xn=xv; width parameters

B ¼ bx2
v=g, Bn ¼ bn=b; and so on.
4. Numerical model

A fully non-linear model for idealised 2-D waves in a numerical wave tank has been developed. A

modified r-transformation is used to map the liquid domain onto a rectangle, such that the moving free

surface in the physical plane becomes a fixed line in the computational mapped domain.

The r-transformation was first used by Phillips [33] in connection with numerical weather forecasting

schemes. Later the sigma coordinate system was used by Mellor and Blumberg [29] for ocean modeling to

improve predictions of both surface Ekman and instabilities in boundary layers. More recently Chern et al.
[9] use a Chebyshev expansion to discretise the r-transformed potential flow equation in their prediction of
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2-D non-linear free-surface motions. The latest model in the literature is described by Turnbull et al. [37]

who simulate inviscid free surface wave motions using a 2-D r-transformed finite element model.

Fig. 2 illustrates the effect of the mapping in the present model, which has been designed so that each
computational cell in the transformed domain is of unit size. This is why we refer to this formulation as the

modified r-transformation. In this model, remeshing due to the moving free surface is avoided. Other

advantages are that the mapping implicitly deals with the free surface motion, and avoids the need to

calculate the free surface velocity components explicitly. Extrapolations are unnecessary, and free surface

smoothing by means of a spatial filter is not required for the results presented here.

With reference to Fig. 2, the mappings from the physical ðx; z; tÞ domain to the transformed ðX ; r; tÞ
domain are given by

x $ X ; X ¼ m1 þ
ðm2 � m1Þ

b
x; z $ r; r ¼ n1 þ

ðn2 � n1Þðzþ hsÞ
h

; t $ T ; T ¼ t; ð18Þ

where h ¼ fþ hs; the wave amplitude is f, the still water depth is hs, and b is the tank width. We designate

the grid size to span from m1 to m2 in the horizontal x-direction and n1 to n2 in vertical z-direction.
The derivatives of the potential function /ðx; z; tÞ are transformed with respect to x, z and t into de-

rivatives of UðX ; r; T Þ.
The first derivatives of the velocity potential, /, are obtained as

o/
ox

¼ ðm2 � m1Þ
b

oU
oX

�
þ a
h
oU
or

�
;

o/
oz

¼ ðn2 � n1Þ
h

oU
or

;

o/
ot

¼ oU
oT

þ c
h
oU
or

;

ð19Þ

where a ¼ �ðr� n1Þ of
oX and c ¼ �ðr� n1Þ of

oT .

Similarly, Laplace�s equation (1) can be rewritten as

o2U
oX 2

þ 1

h
oa
oX

�
� 2a

h
oh
oX

�
oU
or

þ 2
a
h

o2U
oroX

þ a2

h2

"
þ b2ðn2 � n1Þ2

h2ðm2 � m1Þ2

#
o2U
or2

¼ 0: ð20Þ

The fixed vertical wall boundary condition on X ¼ m1;m2, and the flat bed boundary condition on r ¼ n1
(2) become
Fig. 2. The physical domain (a) mapped onto the computational domain (b).
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oU
oX

¼ � a
h
oU
or

;
ðn2 � n1Þ

h
oU
or

¼ 0: ð21Þ

The dynamic free-surface boundary condition (3) on r ¼ n2 becomes

oU
oT
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h
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� �
bX 00

T ; ð22Þ

where Z 00
T and X 00

T are the vertical and horizontal acceleration of the tank, and g denotes acceleration due to

gravity. The kinematic free-surface boundary condition (4) on r ¼ n2 becomes

of
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¼ ðn2 � n1Þ
h

oU
or

1

"
þ ðm2 � m1Þ2

b2
of
oX

� �2
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b2
of
oX

oU
oX

: ð23Þ

Eqs. (20)–(23) are then discretised using the second order Adams–Bashforth scheme and solved in the

transformed domain iteratively using successive over-relaxation.

The remaining part of the article presents test cases based on the above numerical model. The case

studies will report on sloshing motions in fixed, pure vertical and horizontal forced moving tanks. The final

study include result of sloshing motion in tanks forced to move simultaneously in horizontal and vertical

directions.
5. Standing waves in fixed tanks

Simulation of inviscid free sloshing motion in fixed rectangular tanks is the first benchmark validation

test which will be presented. The numerical model is validated for different wavelengths. Increasing wave

steepness is simulated in order to demonstrate cases where the fully non-linear model provides solutions not

obtainable with the approximate forms. Numerical predictions of the free surface motions are compared

with analytical results from second-, and third-order potential theory. The entire second order free-surface
elevation for the nth sloshing mode along the length of the fixed tank can be derived explicitly:

fðx; tÞ ¼ a cosðxntÞ cosðknxÞ
�

þ ax2
n

g
1

8

x4
n þ g2k2n
x4

n

�
þ 1

8

3x4
n � g2k2n
x4

n

�
� 3

2

x4
n � g2k2n

x2
nð4x2

n � x2
2nÞ

�
cosð2xntÞ

þ 1

2

x2
nx

2
2n � x4

n � 3g2k2n
x2

nð4x2
n � x2

2nÞ
cosðx2ntÞ

�
cosð2knxÞ

�
; ð24Þ

where the linear sloshing frequencies are defined as xn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gkn tanhðknhsÞ

p
and x2n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2kn tanhð2knhsÞ

p
.

This solution coincides with other investigators [10,42]. The numerical initial conditions which satisfy the
velocity potential and free-surface equations are prescribed as

fðx; nÞ t¼0j ¼ a cosðknxÞ and /ðx; zÞ t¼0j ¼ 0; ð25Þ

where a is the amplitude of the initial wave profile, kn ¼ np=b is the wave number for n ¼ 0; 1; 2; . . . and x is
the horizontal distance from the left wall.

Non-linear free-surface motions are investigated by varying the initial wave steepness, defined in the

fixed tank studies as e ¼ ax2
n=g, where gravity is g ¼ 9:81 m/s2 until near breaking conditions are en-

countered. The results presented are for a tank of aspect ratio hs=b ¼ 0:5. The linearly stretched grid in the

physical domain in accordance with the r-transformed Eq. (18) is shown in Fig. 2.
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The results herein are based on the first set of numerical tests done by Frandsen and Borthwick [16] who

checked the sensitivity of the numerical scheme to the time step and grid resolution. Figs. 3 and 4 illustrate

for n ¼ 1 and n ¼ 3 the time-dependent free surface motion at the wall of the tank for (a) very small
amplitude sloshing where e ¼ 0:0014, and (b) large amplitude sloshing where e ¼ 0:288. The time histories

of the free sloshing analyses are non-dimensionalised with the sloshing frequency xn, so that the non-di-

mensional time t� ¼ xnt, and the non-dimensional time step Dt� ¼ xnDt. Although a time step of 0.003 s
Fig. 3. Free-surface elevation at the left wall in fixed tank for n ¼ 1, for (a) e ¼ 0:0014 and (d) e ¼ 0:288. - - -, second order solution;

- � - �, third order solution; ––, numerical solution. The corresponding wave phase-plane and spectra of the numerical model (b, c) linear

solution; (e, f) non-linear solution.



Fig. 4. Free-surface elevation at the left wall in fixed tank for n ¼ 3, for (a) e ¼ 0:0014 and (d) e ¼ 0:288. - - -, second order solution;

- � - �, third order solution; ––, numerical solution. The corresponding wave phase-plane and spectra of the numerical model (b, c) linear

solution; (e, f) non-linear solution.
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was used in both cases, the grid size was increased in the vertical direction for the larger amplitude test case.

A grid size of 40� 40 was sufficient to model accurately small to moderate amplitude waves (approximately

e < 0:09), in comparison with the third-order analytical solution. Increasing the grid points in the vertical
direction was found to be more effective in improving accuracy than increasing the grid points in the

horizontal direction. A grid size of 40� 80 was used to model steeper waves (e > 0:1). For large amplitude
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sloshing (n ¼ 1, 3) it can be observed (Figs. 3(d) and 4(d)) that the phase-shift grows in time between the

second order analytical solution and the fully non-linear numerical model. The maximum amplitudes are

also higher than those of the approximate solution. This has also been observed by Tadjbakhsh and Keller
[34], Vanden-Broeck and Schwartz [39], Tsai and Jeng [36] and Greaves et al. [18]. The third order ap-

proximate solution compares well with the numerical solution with regard to the phase. The third-order

solution, however, tends to underpredict the peaks and overestimate the through, especially when the

numerical predicted trough are smallest. The peaks following the smallest trough are also not captured well

by the third order solution. This effect is more evident for n ¼ 1 than n ¼ 3 due higher non-linearity.

The influence of non-linearity can be seen more clearly on the phase-plane diagrams in Figs. 3(b), (e) and

4(b), (e). The small amplitude diagrams (b) display linear behaviour of the free surface with repeatable

patterns for the peaks and troughs in bounded orbits, while the large amplitude cases (e) show bounded
solutions with higher peaks caused by non-linearity.

Figs. 3(c), (f) and 4(c), (f) show the associated spectra. The spectra of small amplitude waves (c) display

the fundamental sloshing frequency. It can be observed that small additional frequencies due to non-linear

mode to mode interaction are present for the large initial amplitude cases (f). We note that they are

responsible for the large disturbances in the free surface elevation.
Fig. 5. Free-surface elevation at the left wall in fixed tank for wave steepness of ––, e ¼ 0:0014; - � -, e ¼ 0:144; - - -, e ¼ 0:288; for (a)

n ¼ 1 and (b) n ¼ 3.

Fig. 6. Wave profiles for a typical half-period, n ¼ 1, for (a) e ¼ 0:0014 and (b) e ¼ 0:288.



Fig. 7. Wave profiles for a typical half-period, n ¼ 3, for (a) e ¼ 0:0014 and (b) e ¼ 0:288.
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Fig. 5 shows the effect of increasing wave steepness on the free surface time history at the tank wall. As

expected, the wave motions become progressively non-linear as the steepness increases. This is reflected by

the higher peaks, lower troughs with a growing phase-shift, as time evolves.

Furthermore, the corresponding numerical wave profiles across the tank at different times during a

typical sloshing period for n ¼ 1, 3 are also shown in Figs. 6 and 7. The small amplitude waves (a) display
linear standing waves whereas the steep wave cases (b) exhibit a dispersion effect that is most evident at the

nodes. Other r-methods show identical behaviour as reported by other investigators [9,37].
6. Vertically excited tanks

The second set of validation tests is concerned with forced sloshing of liquid in a rectangular tank

subjected to vertical base-excitation.
The coordinate system of the numerical model is fixed at the left wall of the tank, and moves with the

tank. The only change to the governing Eqs. (20)–(23) of the numerical model is the dynamical free-surface

boundary condition (22) in which X 00
T ¼ 0. The tank is assumed periodically excited with the vertical base

acceleration, Z 00
T ¼ �x2

vav cosðxvtÞ, where av is the vertical forcing amplitude, t is time and xv is the angular

frequency of forced vertical motion. The initial conditions are equivalent to the sloshing motion simulation

in a fixed tank (25). In the vertically excited tank test cases the parameter jv ¼ avx2
v=g is a measure of the

importance of the vertical forcing motion and e is a measure of non-linearity. Numerical predictions of the

free surface motions are compared with analytical results from second-, and third-order potential theory.
First we note that the linear solution for the motion of fluid in a vertically excited tank was first obtained by

Benjamin and Ursell [4], who also investigated the stability of this motion. In the case when the initial

surface perturbation includes only one Fourier component fð0; xÞ ¼ a cosðknxÞ the solution does not in-

cludes infinite sums and can be represented in a relatively simple form. The second-order correction for the

surface elevation then consist only of the double wavelength term and the entire second order solution can

be written explicitly as

fðx; tÞ ¼ a cosðknxÞZð1Þ
n ðxvtÞ þ a

ax2
v

g

� �
cosðk2nxÞZð2Þ

2n ðxvtÞ; ð26Þ

where the amplitude of the initial perturbation (a) is used as a characteristic amplitude of the wave. The first

and second-order evolution functions Zð1;2Þ
n;2n satisfy the homogeneous and non-homogeneous Mathieu

equations:
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Zð1Þ00
n ðxvtÞ þ X2

nð1þ jvV 00ðxvtÞÞZð1Þ
n ðxvtÞ ¼ 0;
Zð2Þ00
2n ðxvtÞ þ X2
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2n ðxvtÞ ¼

1

2X2
n

1

2

X2
2n

X2
n

  
þ 2

!
K2

n

B2
� X2

nX
2
2n

2

!
Zð1Þ0
n ðxvtÞ2

� ð1þ jvV 00ðxvtÞÞ
K2

n

B2

�
� X2

nX
2
2n

2

�
Zð1Þ
n ðxvtÞ2;

where B ¼ bx2
v=g, X ¼ xn=xv, K ¼ pn, and with the following non-dimensional initial conditions

Zð1Þ
n ð0Þ ¼ 1; Zð2Þ

2n ð0Þ ¼ 0; Zð1Þ0
n ð0Þ ¼ Zð2Þ0

2n ð0Þ ¼ 0:

The free surface motions are examined in cases of increasing wave steepnesses, inside and outside of the

regions of parametric resonance (instability regions). The six test cases considered herein are marked on the

stability map in Fig. 8. The results presented are for a tank of aspect ratio hs=b ¼ 0:5.
The first set of tests are carried out in a stable zone, with frequency ratio X1 ¼ 1:253, and a non-di-

mensional forcing amplitude, jv ¼ 0:5. The time histories for the free surface elevation for small and high

wave steepnesses are shown in Fig. 9. Good agreement between the approximate solution and the numerical
model is achieved for small amplitude waves. The behaviour of the free surface motion in the vertically

excited tank is similar to the standing waves observed in the fixed tank (Fig. 3) but for this magnitude of jv,

irregular peaks and troughs are generated in time. For higher wave steepness, as the solution evolves in

time, a discrepancy in phase-shift between the numerical model and the approximate solution is evident; the

fully non-linear model predicts waves of slightly longer period than the approximate solution. Differences in

amplitudes, of both peaks and troughs, can also be observed. It should be noted that for small non-lin-

earities (e ¼ 0:0014), a grid size of 40� 40 resulted in sufficient accuracy in comparison with the second-

order approximation (Fig. 9 (a)). However, the steeper wave case (e ¼ 0:288) required a finer grid resolution
of 40� 80 (Fig. 9(d)). It was again found to be more effective in ensuring accuracy by increasing the mesh

density in the vertical direction than by using higher resolution horizontally. The non-dimensionalised time

is defined as t� ¼ x1t, and the non-dimensional time step is Dt� ¼ x1Dt where x1 is the fundamental first

sloshing frequency in a fixed tank. A non-dimensional time step of 0.011 was used for the test case in the

stable region for both the small and steep wave cases. Fig. 9(b) and (e) show the corresponding phase-plane
Fig. 8. Linear stability map of sloshing motion in vertically excited tank. Test cases (�): (1) X1 ¼ 1:253; jv ¼ 0:5, (2) X1 ¼ 0:5;

jv ¼ 0:3, (3) X1 ¼ 1:0; jv ¼ 0:5, (4) X3 ¼ 0:5; jv ¼ 0:2, (5) X1 ¼ 0:6; jv ¼ 0:5, (6) X1 ¼ 0:55; jv ¼ 0:5.



Fig. 9. Free-surface elevation at the left wall in vertically excited tank for n ¼ 1 in stable region, X1 ¼ 1:253, jv ¼ 0:5 (Fig. 8: test case

1) for (a) e ¼ 0:0014 and (d) e ¼ 0:288. - - -, second order solution; ––, numerical solution. The corresponding wave phase-plane and

spectra of the numerical model: (b, c) linear solution; (e, f) non-linear solution.
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plots for the small and steep wave cases. The small amplitude wave phase-plane plot (b) displays linear

behaviour of the free-surface through the closed orbit whereas the non-repeatable non-closed orbits of the

large amplitude sloshing in (e) show that the free-surface exhibits more complicated behaviour typical of

non-linear systems.

Fig. 9(c) and (f) shows the spectra corresponding to small and large amplitude wave cases (Fig. 9(a) and
(d)). The linear solution (Fig. 9(c)) displays a dominating frequency of r1=2=X1 near to the first fundamental
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sloshing frequency (x1) and secondary frequencies at r1=2� 1=X1. The non-linear solution (Fig. 9(f))

contains additional frequencies related to low energy content, including the second fundamental sloshing

frequency (r2=2=X1), which contributes to the non-linear generated waves.
Fig. 10 shows the free surface elevation time histories in unstable regions. The wave steepness parameter

was kept constant at a low value of e ¼ 0:0014 and a grid size of 40� 40 was used. A non-dimensional time
Fig. 10. Free-surface elevation at the left wall of vertically excited tank in unstable regions for small initial amplitude (e ¼ 0:0014): (a)

X1 ¼ 0:5, jv ¼ 0:3 (Fig. 8: test case 2); (b) X1 ¼ 1:0, jv ¼ 0:5 (Fig. 8: test case 3); (c) X3 ¼ 0:5, jv ¼ 0:2 (Fig. 8: test case 4). - - -, second

order solution; - � - �, third order solution; ––, numerical solution. The corresponding phase plots for the numerical model (d, e, f).
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step of 0.011 was prescribed. Fig. 10(a) shows the free surface elevation time history for X1 ¼ 0:5, jv ¼ 0:3.
The test, no. 2 in Fig. 8, corresponds to a first sloshing mode in the first instability region. From t� ¼ 0 to

approximately 80, the wave amplitudes and phase predicted by the fully non-linear model are found to be in
close agreement with the second order solution (26). Then the amplitudes begin to grow rapidly, dis-

crepancies in amplitudes and phase between the numerical model and the second order solution increases,

due to the enhanced non-linearity of the free surface motions. The third-order approximation (Section 3)

compares almost exact with the numerical solution. However, the third-order solution predicts slightly

deeper troughs and lower peaks as time evolves. The associated numerical predicted phase-plane diagram is

shown in Fig. 10(d). Fig. 10(b) shows the free surface elevation time history X1 ¼ 1:0, jv ¼ 0:5 (test case 3

in Fig. 8). Following parameters were assumed: e ¼ 0:0014, Dt� ¼ 0:011 and a grid size of 40� 40 was used.

This is also an example related to the first sloshing mode but this particular free surface test case lies in the
second instability region. As expected, the amplitudes do not grow rapidly in this region compared to the

first instability region (Fig. 10(a)). We observe that the second order solution deviates from the numerical

solution as times evolves whereas there is almost an exact agreement with the third order solution. Further

we observe that the amplitude of the first mode start to grow in a resonance mode. As the amplitude in-

creases the natural frequency changes. The change of the natural frequency with amplitude creates low

frequency amplitude oscillations. This non-linear detuning effect is also in agreement with the numerical

solution. Similar free-surface behaviour has also been observed by others, e.g., Hill [21]. Fig. 10(c) corre-

spond to the third test case (X3 ¼ 0:5, jv ¼ 0:2, e ¼ 0:0014, Dt� ¼ 0:020 and grid: 40� 40) which represents
the second fundamental sloshing mode and lies in the first instability region (test case 4 in Fig. 8). Because it

is a second mode, again the amplitudes are not found to grow rapidly in comparison with the first mode

case (Fig. 10(a)). Again the second order solution deviates in peaks, troughs and phase compared to the

numerical solution. The third order and the numerical solutions agree well, capturing the detuning effect.

There is almost exact in-phase behaviour at all times. The peaks of the third order solution compare well

with the numerical solution from t� ¼ 0 to approximately 150 at which time the amplitudes decays into a

lower oscillation mode. Then the third order solution underestimate the peaks and troughs. Moreover, it

can be observed in the associated numerical predicted phase-plane diagrams (Fig. 10(e) and (f)) that the free
surface exhibits standard linear behaviour for an unstable system.

The final test of pure vertical tank excitation is carried out near the stability boundary (inside and out-

side). Test 5 in Fig. 8 represents a free surface problem which is just outside the instability region. Test 6

contains a set of parameters close to the ones of test case 5, but is located just inside the instability region. In

Fig. 11 the free-surface elevation is simulated for small and steep amplitudes for these two cases. Although
Fig. 11. Free-surface elevation at the left wall of vertically excited tank near stability boundary. (a) X1 ¼ 0:6; jv ¼ 0:5 – stable region

(test case 5); (b) X1 ¼ 0:55; jv ¼ 0:5 – unstable region (test case 6). - - -, small initial amplitude (e ¼ 0:0014); ––, large initial amplitude

(e ¼ 0:288).
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test case 5 and 6 have closely spaced parameters, the simulations of the numerical model illustrate the ex-

pected stable solutions for X1 ¼ 0:6, jv ¼ 0:5 and unstable solutions for X1 ¼ 0:55, jv ¼ 0:5. It is observed
that the solution of test case 5 remains stable for both small and large initial wave steepnesses whereas the
small initial wave steepness of test case 6 is sufficient to demonstrate a rapidly unstable solution.
7. Horizontally excited tanks

Investigations of forced sloshing of liquid in a rectangular 2-D tank subjected to horizontal base-exci-

tation is undertaken in this section. The only change to the governing Eqs. (20)–(23) is the dynamical free-

surface boundary condition (22) in which Z 00
T ¼ 0.

A linear solution for fluid motions with surface tension in a horizontally base-excited tank was first

obtained by Faltinsen [10]. Herein surface tension is assumed to be negligible. We prescribe harmonic

forced motion of XTðtÞ ¼ ah cosðxhtÞ where ah denotes the horizontal forcing amplitude, t is time and xh is

the angular frequency of forced horizontal motion. The initial conditions are /ð1;2Þ
n ð0Þ ¼ 0, fð1;2Þn ð0Þ ¼ 0,

corresponding to the fluid being at rest. We use the coordinate system with x-axis fixed on the undisturbed

water surface and z-axis fixed on the left-hand wall of the tank. The numerical predictions of the free

surface motions in the horizontally excited tanks will be compared with analytical results from second- and

third-order potential theory. When xv ¼ 0, it can be shown that the entire second order solution for the
free-surface elevation and velocity potential can be written explicitly as

fðx; tÞ ¼ ah
X1
n¼0

cosðknxÞZð1Þ
n ðxhtÞ

 
þ ahx2

h

g

� �X1
n¼0

cosðknxÞZð2Þ
n ðxhtÞ

!
ð27Þ

and

/ðx; z; tÞ ¼ ahg
xh

X1
n¼0

coshðknðzþ hsÞÞ
coshðknhsÞ

cosðknxÞUð1Þ
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h

g

� �X1
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; ð28Þ
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where Kn ¼ pn are non-dimensional wave numbers. It can also be shown that the first order solution re-

duces to

Zð1Þ0
n ðxhtÞ � X2

nU
ð1Þ
n ðxhtÞ ¼ 0;
Uð1Þ0
n ðxhtÞ þ Zð1Þ

n ðxhtÞ ¼ �BBnH 00ðxhtÞ:

The free surface motions are numerically examined off- and at resonance where resonance is occurring

when the external horizontal forcing frequency (xh) is equal to the natural sloshing frequency (xn) of the

liquid. The free-surface behaviour is investigated by varying the external force through the parameter

jh ¼ ahx2
h=g which is a measure of non-linearity. The results presented are for a tank of aspect ratio
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hs=b ¼ 0:5, except for a special comparison study near the critical water depth (shown in the last part of this

section).

Fig. 12(a) and (d) show the free-surface elevation at the left wall in an off-resonance region with
xh=x1 ¼ 0:7 for small horizontal forcing amplitude where jh ¼ 0:0036 (a), and for large horizontal forcing

amplitude where jh ¼ 0:036 (d). The time histories of the forced sloshing analyses are non-dimensionalised
Fig. 12. Free-surface elevation at the left wall in horizontally excited tank; xh=x1 ¼ 0:7; (a) jh ¼ 0:0036 and (d) jh ¼ 0:036; - - -,

second order solution; ––, numerical solution. The corresponding wave phase-plane and spectra of the numerical model: (b, c) linear

solution; (e, f) non-linear solution.
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with the first natural sloshing frequency. A grid size of 40� 40 and 40� 80, respectively, were prescribed for

small and large forcing frequency. A time step of 0.003 s was used in both cases. Good agreement with the

second order solution is achieved for both the case of small and large forcing frequency. The associated
wave phase-planes (Fig. 12(b) and (e)) display linear behaviour of the free-surface with irregular patterns

for the peaks and troughs in bounded orbits. Fig. 12(c) and (f) shows the associated spectra of the free

surface elevation. It can be observed for the small forcing amplitude case (c) that there exists energy at two

distinct frequencies, i.e. at the forcing frequency and at the first sloshing frequency. In addition, for the

larger forcing amplitude case (f), a third frequency with low energy content exists (x2) due to non-linear

effects. This second natural sloshing frequency is responsible for the deviation between the numerical model

and second order approximation.

The test case presented in Fig. 13 is also an off-resonance case but with a forcing frequency higher than
the first natural sloshing frequency (xh=x1 ¼ 1:3). As shown in the small amplitude spectrum (c) an ad-

ditional (third) natural sloshing frequency is present in the solution of this particular free-surface problem.

The free-surface time elevation for small amplitude waves (jh ¼ 0:0036) is shown Fig. 13(a). Although x3

has a low energy content it contributes to the lower numerical predicted peaks compared to the second

order solution. The associated wave phase diagram (b) displays irregular peaks and troughs in bounded

orbits. Next, the horizontal forcing parameter was increased to jh ¼ 0:072 and the free-surface elevation

simulated (Fig. 13(d)). The increase of jh introduces non-linearity in the solution resulting in discrepancy in

amplitudes between the fully non-linear model and the second order solution. As time evolves the phase
between numerical model and approximate solution deviates, the numerical model having a longer period.

This is due to the present of two additional secondary frequencies (xh � x1), as shown in the spectrum (f),

which are generated by non-linear interaction between modes. For this reason the wave phase-plane (e)

displays more irregular patterns compared to the small forcing frequency case (b).

Fig. 14 compares the small and large amplitude cases of the fully non-linear model for xh=x1 ¼ 0:7 and

1.3. For stronger excitation it can be observed that the peaks are higher, the troughs are less deep and the

period is longer than those of the approximate solution, which is typical non-linear effects.

Fig. 15 shows the free-surface elevation at the left wall at resonance, xh ¼ x1 ¼ 3:76 rad/s, for (a) small
jh ¼ 0:0014 and (c) large jh ¼ 0:014 horizontal forcing amplitudes. For the small amplitude case there is

good agreement between the approximate solutions and the numerical model. For the large amplitude case,

at the initial stage of the process (tx1 < 20) while the amplitude is still small, the numerical solution co-

incides with both the second-order and the third-order solutions. Eventually, as the amplitude increases, the

non-linear effects begin to play a considerable role leading to higher peaks and smaller troughs in the

surface elevation, compared to the third-order solution. As in the previous test cases the third-order so-

lution predict the phase almost in exact agreement with the numerical solution. The second order solution

do capture these non-linear features but discrepancy in amplitude and phase compared to the fully non-
linear model is evident. This process can be observed even more clearly on the numerical predicted wave

phase-planes, when the spiral trajectory of the linear solution (b) deforms gradually from cycle to cycle in

the non-linear case (d), as the centre of the trajectory gradually moves towards higher amplitudes. The

maximum steepness shown for the resonant solution (Fig. 15(c)) can be estimated to be approximately 0.25,

and as shown the numerical solution begins to deviate from the linear one as the steepness reaches about

0.1.

As mentioned in Section 1, other investigators have analysed horizontal tank motion. Herein we com-

pare a specific test case previously done by Hill [21] and Faltinsen et al. [11]. Their tank was 1.73 m wide
with a still water depth of 0.6 m. We define the wave length as k ¼ 2b=n and denotes the critical depth as hc.
At the critical depth the response changes from a ‘‘hard-spring’’ to a ‘‘soft-spring’’. Gu et al. [20], Faltinsen

[11], Waterhouse [41] found hc=k ¼ 0:583 m or in general hc ¼ 0:337� b for the first mode, respectively.

Since hs is 0.6 m, this particular study is a near critical depth case. Fig. 16 represents an off-resonance case

[11,21] with a forcing frequency higher than the first natural sloshing frequency (xh=x1 ¼ 1:283), similar to



Fig. 13. Free-surface elevation at the left wall in horizontally excited tank; xh=x1 ¼ 1:3; (a) jh ¼ 0:0036 and (d) jh ¼ 0:072; - - -,

second order solution; ––, numerical solution. The corresponding wave phase-plane and spectra of the numerical model: (b, c) linear

solution; (e, f) non-linear solution.
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Fig. 13 where jh ¼ 0:069 (large). The fully non-linear solution (based on a grid size 40� 80 and a time step

of 0.003 s) is compared with Hill [21] who developed a third order solution assuming one dominating mode.

We also compare with the second and third order solution (Section 3). The troughs of the third order

solution compare well with the numerical results, as shown in Fig. 16. However the third order peaks are

over estimated. The second order solution compare better with the numerical results than the third order, in

the periods where the amplitudes are largest. The opposite is true for the smallest amplitudes. Hill�s [21]



Fig. 15. Free-surface elevation at the left wall in horizontally excited tank at resonance; xh=x1 ¼ 1; (a) jh ¼ 0:0014 and (c) jh ¼ 0:014;

- � -, linear solution; - - -, second order solution; - � - �, third order solution; ––, numerical solution. The corresponding phase-plane of the

numerical model: (b) linear solution; (d) non-linear solution.

Fig. 14. Free-surface elevation at the left wall in horizontally excited tank. (a) xh=x1 ¼ 0:7; - - -, small amplitude solution

(jh ¼ 0:0036); ––, large amplitude solution (jh ¼ 0:036). (b) xh=x1 ¼ 1:3; - - -, small amplitude solution (jh ¼ 0:0036); ––, large am-

plitude solution (jh ¼ 0:072).
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third order analytical-based algorithm generates a free surface elevation with smaller troughs/peaks com-

pared to the fully non-linear solution. Also a phase shift is present compared to the other approximate

solutions and the numerical method. Furthermore, Faltinsen et al. [11] did extensive theoretical and ex-



Fig. 16. Free-surface elevation at the left wall in horizontally excited tank; xh=x1 ¼ 1:283; ah ¼ 0:029 m and jh ¼ 0:069; ––, numerical

solution; � � �, second order solution; - - -, third order solution; - � - �, Hill (2003).
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perimental sloshing experiments. Fig. 17 shows the theoretical result of Faltinsen et al. [11] of the above

mentioned test case of Fig. 16. Their solutions generate peaks of 0.113 m/0.136 m and troughs of 0.107 m/

0.1 m corresponding to the experimental and theoretical (impulse) tests. The present equivalent numerical

solution generates 0.134 m/0.108 m at an equivalent time of 9.1 s/8.3 s, closer to the theoretical model.

Later, as time evolves, at 37.1 s/37.8 s the numerical solution predicts peaks and troughs of 0.155 m/0.097
m. Faltinsen et al. predicts peaks/troughs of 0.127 m/0.087 m and 0.143 m/0.079 m corresponding to the

experimental and theoretical (impulse) tests, respectively. Therefore the numerical solution is in reasonable

agreement with the work of Faltinsen et al. for this particular test case.
Fig. 17. Solution of Faltinsen et al. (2000) showing the free-surface elevation at the left wall in horizontally excited tank;

xh=x1 ¼ 1:283; ah ¼ 0:029 m and jh ¼ 0:069. Theoretical predictions include two different initial conditions. The curve ‘‘Zero’’

corresponds to zero initial conditions, ‘‘Impulse’’ means initial impulse conditions.
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8. Horizontally and vertically excited tanks

Let us now investigate the influence of vertical excitation on the solution for pure horizontal motion
considered for hs=b ¼ 0:5 in the previous sections. As mentioned we use the general form of the excitation

laws XTðtÞ ¼ ahHðxhtÞ; ZTðtÞ ¼ avV ðxvtÞ, where ah;v, xh;v are the characteristic amplitudes and frequencies

of horizontal and vertical motion, respectively. The initial conditions related to the fluid being at rest at

time t ¼ 0 are /ðx; z; 0Þ ¼ 0; fðx; 0Þ ¼ 0: We prescribe harmonic tank excitation in both horizontal and

vertical directions with excitation law V ðsÞ ¼ HðsÞ ¼ cosðsÞ. In this case we can describe the individual

sloshing modes in accordance with (11) which becomes unstable for certain values of parameters. It can be

observed that the horizontal component of the motion generates perturbations with wave numbers kn
corresponding to odd values of n and n ¼ 0. If any of the pairs of the parameters ðXn; jvÞ, n ¼ 1; 3; . . . lie in
the instability region, then the corresponding mode grows in time exponentially. However, as we will

demonstrate, if mode interaction occurs detuning effect may be present. The stability map of (11) is shown

in Fig. 18. In the following, results are shown for the selected test cases with kv ¼ 0:2; 0:3; 0:5 including all

associated individual sloshing modes, as marked in Fig. 18.

All models comprise 40� 40 grid points for small horizontal forcing frequency and 40� 80 grid points

for large horizontal forcing frequency and a time step of 0.003 s. The tank dimensions and free sloshing

frequencies are the same as in the previous sections (hs=b ¼ 0:5). The fully non-linear numerical results are

compared with second-order and third-order approximate forms for standing waves in a tank moving in
both horizontal and vertical directions. In the horizontally- and vertically-forced tank studies, the pa-

rameter jh ¼ ahx2
h=g is a measure of the importance of non-linearity. As mentioned, the equation for the

combined motion (11) differs from the equation for pure vertical excitation, by the forcing terms due to

the horizontal motion on its right hand side. These terms can produce resonance, which is recognised by the

linear growth of the amplitude in time. Contrary to the pure horizontal motion we now have infinite

number of resonances instead of one. Figs. 19–21 illustrate the time history of the free surface elevation at

the left wall for three main resonant frequencies of the horizontal motion (xh=x1 ¼ 0:18, 0.98, 1.78) in a
Fig. 18. Stability map for the first-order linear solution. Symbols represent points corresponding to the odd sloshing modes for selected

cases. *: X1 ¼ 1:253, jv ¼ 0:5; �: X1 ¼ 0:5, jv ¼ 0:3; �: X1 ¼ 1:0, jv ¼ 0:5; n: X1 ¼ 0:276, X3 ¼ 0:5, jv ¼ 0:2.



Fig. 19. Free-surface elevation at the left wall for the main resonances in horizontally and vertically excited tank X1 ¼ 1:253, jv ¼ 0:5,

xh=x1 ¼ 0:98. (a) jh ¼ 0:0014 and (b) jh ¼ 0:0069; - - -, second order solution; - - -, third order solution; ––, numerical solution.

Fig. 20. Free-surface elevation at the left wall for the first side resonances in horizontally and vertically excited tank X1 ¼ 1:253,

jv ¼ 0:5, xh=x1 ¼ 0:18. (a) jh ¼ 4:85� 10�5 and (b) jh ¼ 0:0194; - - -, second order solution; - - -, third order solution; ––, numerical

solution.

Fig. 21. Free-surface elevation at the left wall for the second side resonances in horizontally and vertically excited tank X1 ¼ 1:253,

jv ¼ 0:5, xh=x1 ¼ 1:78. (a) jh ¼ 0:0046 and (b) jh ¼ 0:0228; - - -, second order solution; - - -, third order solution; ––, numerical

solution.
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stable region (first mode (�) in Fig. 18 or r ¼ 2:453 in Fig. 1). The characteristics of the vertical tank motion

are the same as in test case no. 1 in Fig. 8 (X1 ¼ 1:253; jv ¼ 0:5). The strongest of the resonant frequencies
(Fig. 19) relate to the situation in which the horizontal forcing frequency is close to one of the free sloshing
frequencies, here x1. The two other resonant frequencies (Figs. 20 and 21) relate to the coupled frequencies

(xv � xh) coinciding with a natural sloshing frequency. We note the resonance at the main frequency

(xh=x1 ¼ 0:98) is stronger and thus provides a higher rate of growth of perturbations compared to the

secondary frequencies (xh=x1 ¼ 0:18, 1.78), as can be observed by comparing the amplitudes in Figs. 19–

21. For small horizontal forcing amplitude the numerical amplitude coincides with second-order small

perturbation theory (Figs. 19(a) and 20(a)), and there is almost exact in-phase behaviour at all times. For

higher horizontal forcing amplitude, the numerical non-linear solution is close to the approximate solutions

from t� ¼ 0 to approximately 60, when the wave steepness is still small (Figs. 19(b) and 20(b)). The influence
of non-linearity grows in time as the steepness increases, which can be observed by higher peaks and smaller

troughs, which is the reason why the approximate solutions begin to deviate from the fully non-linear

numerical model; the third-order being most accurate. The third resonant case, shown in Fig. 21, relates to

the highest forcing frequency case (xh=x1 ¼ 1:78) of the three selected tests. This high forcing frequency is

responsible for the non-linearity produced at the free surface even for the small initial amplitude test shown

in Fig. 21(a) (jh ¼ 0:0046). Discrepancy between second/third-order and numerical solution in both am-

plitude and phase occurs as time evolves and becomes more pronounced for the large amplitude case

(jh ¼ 0:0228), as shown in Fig. 21(b). In general, we observe the free surface exhibits more complicated
irregular behaviour than for pure horizontal excitation, due to the influence of vertical tank motion.

Fig. 22 shows the free surface elevation time histories and the associated wave phase diagrams for

unstable solutions. These selected cases for jv ¼ 0:2, 0.3, 0.5 are indicated in Fig. 18. The tests include a

small horizontal forcing amplitude combined with the vertically excited tank cases (test no. 2, 3 and 4 in

Fig. 8). The only difference when comparing the results of Fig. 22 with Fig. 10, is that the tank is moved

horizontally with a small forcing amplitude. The free surface sloshing of the combined forced tank motion,

shown in Fig. 22, illustrates that the instability is still due to the vertically forced motion and that the small

horizontally forced tank motion only causes disturbance and delay in the occurrence of free surface in-
stability. The free surface elevation of Fig. 22(a) represents the first sloshing mode in the first instability

region (Fig. 18: �: X1 ¼ 0:5; jv ¼ 0:3). From t� ¼ 0 to approximately 110, the wave amplitudes predicted by

the fully non-linear model are found to be in close agreement with the second/third order solutions. Then

the amplitudes begin to grow rapidly, discrepancies in amplitudes with the approximate solutions are

found, as expected. The third-order solution is most accurate. The discrepancy is however minor because

the first mode is dominating at all times. The associated wave phase diagram (Fig. 22(d)) displays more

clearly the unstable system, showing the higher peaks and lower troughs as time evolves. Fig. 22(b) is an

example of a first sloshing mode in the second instability region (Fig. 18: �: X1v ¼ 1:0, jv ¼ 0:5). This case
therefore exhibit a less strong resonance than the test of Fig. 22(a). For this particular unstable system, the

amplitudes are small for t� ¼ 0 to 200 and peaks and troughs have equal magnitude. The corresponding

wave phase diagram (Fig. 22(e)) also shows the linear free surface behaviour. Therefore good agreement is

found between the numerical model and the approximate solutions. The free surface behaviour shown in

Fig. 22(c) has a stable first sloshing mode (Fig. 18: n: X1v ¼ 0:276, jv ¼ 0:2). However, the third sloshing

mode (Fig. 18: n: X3v ¼ 0:5, jv ¼ 0:2) is an unstable solution in the first instability region. Therefore the

entire solution becomes unstable. The amplitudes grow faster compared to the test of Fig. 22(b) because the

solution is within the first instability region but is less in magnitude than the strong resonance case of
Fig. 22(a), as expected. The numerical amplitudes and phase (c) deviate from both second-order and third-

order solutions. The detuning effect of the third order solution is however well predicted in the sense that

the third order non-linearity for the third mode is captured (note that the second-order solution is invalid at

this stage). The shift in the third order solution compared to the fully non-linear solution is due to the

influence of the first mode on the initial oscillations, at a time where the third mode has not started to grow.



Fig. 22. Free-surface elevation at the left wall of horizontally and vertically excited tank for selected unstable cases (parametric

resonance), - - -, second order solution; - - -, third order solution; ––, numerical solution for small horizontal forcing (ah ¼ 0:001 m). (a)

jv;X1 ¼ 0:3; 0:5 (Fig. 18: �); (b) jv;X1 ¼ 0:5; 1:0 (Fig. 18: �); (c) jv ¼ 0:2, X1v ¼ 0:276, X3 ¼ 0:5 (Fig. 18: n). The associate wave

phase diagrams of the numerical model (d, e, f).
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The first–third mode interaction produces perturbations in the third mode which are predicted fairly well by

the third order method (Section 3). However, multimodal algorithms [11] are recommended to be used in

this case. For the corresponding vertical case (Fig. 10(c)), where the first mode is not excited, the agreement

between third order and numerical solutions are better. The fully non-linear numerical predictions are also

illustrated on the corresponding phase-plane plot (f).



82 J.B. Frandsen / Journal of Computational Physics 196 (2004) 53–87
Furthermore, we present the off-resonance case in a stable region for the horizontal motion

(xh=x1 ¼ 0:7) considered in the previous section (Fig. 12) coupled with a vertical motion at frequency

xv ¼ 3 rad/s (X1 ¼ 1:253) and vertical forcing parameter jv ¼ 0:5 (Fig. 9). The horizontal forcing pa-
rameter is varied (jh ¼ 0:0036, 0.036) representing small and large forced motion of ah ¼ 0:01, 0.1 m.

With reference to the pure horizontal forced tank (Fig. 12) and the pure vertical forced tank motion

(Fig. 9), the combined forced tank motion in Fig. 23 illustrates the change in the free-surface behaviour
Fig. 23. Free-surface elevation at the left wall in horizontally and vertically excited tank; xh=x1 ¼ 0:7; jv ¼ 0:5; X1 ¼ 1:253. (a)

jh ¼ 0:0036 and (d) jh ¼ 0:036; - - -, second order solution; ––, numerical solution. The corresponding wave phase-plane and spectra of

the numerical model: (b, c) linear solution; (e, f) non-linear solution.
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due to the vertical vibrations. The wave phase diagrams show more complicated surface elevation

behaviour for both (b) linear and especially (e) non-linear solutions. The reason for this is the presence

of additional frequencies in the spectrum due to the vertical motion, for example the coupled fre-
quencies xv � xh. Figs. 23(c) and (f) show the spectra corresponding to the small and the large am-
Fig. 24. Free-surface elevation at the left wall in horizontally and vertically excited tank; xh=x1 ¼ 1:3; jv ¼ 0:5; X1 ¼ 1:253. (a)

jh ¼ 0:0036 and (d) jh ¼ 0:072; - - -, second order solution; ––, numerical solution. The corresponding wave phase-plane and spectra of

the numerical model: (b, c) linear solution; (e, f) non-linear solution.
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plitude wave cases (Fig. 23(a) and (d)). The linear solution (Fig. 23(c)) displays two dominating fre-

quencies of which one is equivalent to the horizontal forcing frequency xh and the other r1=2=X1 which

is near the first natural sloshing frequency and secondary frequencies at r1=2� 1=X1. The non-linear
solution (Fig. 23(f)) contains additional frequencies related to low energy content, including the second

natural sloshing frequency (r2=2=X1), which besides the large jh, contributes to the non-linear generated

waves.

Next, as shown in Fig. 24, we explore another off-resonance case in the stable region which is similar to

the previous mentioned test case (Fig. 13) but has an increased horizontal forcing frequency of

xh=x1 ¼ 1:3. We intend to investigate the effect of combining the forced horizontal tank test case of Fig. 13

and the vertically excited tank jv ¼ 0:5; X1 ¼ 1:253 (test case no. 1 in Fig. 8). As experienced in the pure

horizontal case shown in Fig. 13(a)–(c) with small jh, non-linearity causes discrepancy in amplitudes as
time evolves between the fully non-linear model and the second order solution even for small initial hor-

izontally forced tank excitation (Fig. 24(a)). Irregular wave amplitudes are simulated with evidence of

frequency coupling (double closely spaced peaks) between xh and r1=2=X1 at approximately every Dt� of 20.
Especially at these periods, the second order solution deviates from the fully non-linear model. Again the

combined forced tank motion with a prescribed small forcing frequency contains secondary frequencies at

r1=2� 1=X1. This was also found for the pure horizontally forced excited tank (Fig. 9(c)). The discrepancy

between numerical model and second order solution grows when the horizontal forcing frequency is in-

creased to jh ¼ 0:072, as expected, when the non-linear parameter becomes larger. The non-linear effect is
shown in Fig. 24(d)–(f). An additional frequency exists (xh � r1=2) compared to the small jh test due to

non-linear mode to mode interaction, as it can be observed for the larger amplitude of horizontal motion.

Although the mode has a low energy content, as shown in Fig. 24(f), it is responsible for the deviation

between the approximate form and the numerical model. The second order solution is incapable of cap-

turing this non-linear effect. We note the non-linear effects will become enhanced if xh;x1 and xv become

more closely spaced.

With reference to the pure horizontal forced tank motion shown in Fig. 14, Fig. 25 compares the

small and the large combined tank motion with the frequency ratio of (a) xh=x1 ¼ 0:7 and (b)
xh=x1 ¼ 1:3 for jv ¼ 0:5; X1 ¼ 1:253. The large amplitude solution deviates from the small amplitude

solution in both peaks, troughs and phase. The effect is more pronounced for the high frequency case

Fig. 14(b).
Fig. 25. Free-surface elevation at the left wall in a horizontally and vertically excited tank; jv ¼ 0:5; X1 ¼ 1:253. (a) xh=x1 ¼ 0:7; - - -,

small amplitude solution (jh ¼ 0:0036); ––, large amplitude solution (jh ¼ 0:036). (b) xh=x1 ¼ 1:3; - - -, small amplitude solution

(jh ¼ 0:0036); ––, large amplitude solution (jh ¼ 0:072).
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9. Conclusions

Non-linear effects of standing wave motion of liquid in 2-D fixed and forced excited tanks have been
investigated numerically. A fully non-linear inviscid numerical model has been developed based on po-

tential flow theory with the mapped governing equations solved using finite differences.

Results of liquid sloshing induced by harmonic base excitations are presented for small to steep non-

breaking waves. The simulations are limited to a single water depth above the critical depth corresponding

to a tank aspect ratio of hs=b ¼ 0:5. We note that the numerical model is valid for any water depth except

for small depth when viscous effects would become important. Moreover, solutions are limited to steep non-

overturning waves.

First, simulations of sloshing motion in fixed tanks were carried out. The model was validated for
different wave lengths and steepnesses. Good agreement between second order potential theory and the

numerical model has been obtained for small amplitude wave cases. The numerical model captures high

order non-linearities for the steep sloshing cases which was reflected by higher peaks, lower troughs and

period elongation in comparison with second order potential theory. These are typical non-linear effects. It

was found that the third-order single modal solutions compare in general well with the fully non-linear

numerical predictions with almost exact agreement in phase at all times.

Second, sloshing motion in vertically excited tanks were carried out for stable and unstable solutions.

Sloshing effects in a vertically excited tank in stable regions display similar behaviour to free sloshing
motions in a fixed tank when the forcing parameter, jv, is small. This confirms the periodic behaviour of the

small amplitude solution. When jv grows, the fluid behaviour is no longer perfectly periodic, and so non-

regular amplitudes result, even for the case of small amplitude waves. Non-linear effects complicate the fluid

behaviour further, making it almost unpredictable. However, in stable regions, the solution remains

bounded at all times. Vertical motions produce drastic effects within the instability regions, where para-

metric resonance takes place. In these regions, even small excitations can cause the growth of small initial

perturbations, if the forcing acts on the tank for a sufficiently long time. We also demonstrate examples

when the frequency changes during growing amplitudes (detuning effects). Good agreement between the
third-order and numerical solution is found for the single mode dominant cases. We also showed that the

second-order solution do not capture detuning effects.

Third, analyses were carried out with pure horizontal forced excitation including excitation frequencies

off-resonance, and at resonant frequencies. The resonance in this case occurs at one of the natural sloshing

frequencies. For the large forcing frequency, the third-order solution compares well with the numerical

prediction. This is especially true with regard to the phase. The peaks were slightly underpredicted and the

troughs slightly overestimated compared to the numerical results. Then, vertical forced vibrations were

added and it was found that they significantly effect the resulting combined motion. In the unstable regions
vertical excitation caused fast exponential growth of the waves generated by the small horizontal tank

motion. Some of the test cases showed evidence of detuning effects. For example, a resonance mode

changing into a low frequency mode of oscillations. It was shown that the discrepancy between third-order

and numerical solution was minor for single dominant modes. Although detuning effect can be captured by

the third-order solution, it was found that it does not work so well when modes interact. A multimodal

algorithm should be used [11]. The combined motion test cases revealed results lying within the first and

second instability regions showing a free-surface elevation with the highest growth rate of perturbations in

the first region. It was also found that in addition to the resonant frequency of the pure horizontal exci-
tation, an infinite number of additional resonance frequencies exist due to the combined motion of the tank.

In summary, it was demonstrated that the fully non-linear model provides solutions not obtainable with

the approximate forms. This is especially true for steep waves, high forcing frequency and mode interaction

cases. Each solution was obtained for both small and large amplitudes of horizontal or vertical or combined

excitation in a tank with still water height of 1 m and tank length of 2 m. In general, the small-amplitude
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free-surface predictions compare well with second-order theory, however, the numerical wave tank captures

steep waves generated by large horizontal forcing amplitudes which differ from the third-order approxi-

mation. The maximum value of steepness, which is the measure of the non-linearity of the solution, ob-
tained during the calculations was 0.3. It was found that for the present problem the relatively high

steepness of 0.1 leads to a solution being significantly non-linear. In all cases, high amplitude solutions

produce higher peaks and smaller troughs than small amplitude linear solutions. Furthermore, non-linear

interaction between individual sloshing modes were demonstrated by extra peaks in the power spectrum of

surface elevation, which leads to complicated irregular behaviour of the free-surface. In general, the liquid

sloshing motion exhibits complicated behaviour due to both the horizontal and vertical forced tank motion.

It is shown that vertical excitation causes the instability associated with parametric resonance of the

combined motion for a certain set of frequencies and amplitudes of the vertical motion while the horizontal
motion is related to classical resonance.

The numerical model is simple, computationally quick and accurate. For the cases presented herein there

was no need for free surface smoothing. The present potential flow model provides a simple way of sim-

ulating steep non-breaking waves, that may be readily extended to the prediction of 3-D wave motion.
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